

Finding Your C/C++
Pointer and Array Bugs

(a step-by-step tour
to some useful tools

beyond the debugger)

Klaus Kusche, May 2012

Contents

● Knowing your enemies
● First aid:

Program checking, debugging, tracing
● Compiling your code with seatbelts:

Address sanitizer & Co
● Dealing with plain off-the-shelf code:

Valgrind and friends
● Similar tools for different purposes

Enemy #1:
Bad pointers

● NULL pointer
● Uninitialized pointer:

- Single pointer variable
(simple - usually caught by the compiler)

- Element of a struct or an array of pointers
(much harder to find - compilers will not detect that!)

● Pointer to a local array or struct
after the function has returned:

„use-after-return“

Enemy #2:
Arrays & pointer arithmetic

● Array bounds violations:
● „Off by one“ errors in loops and size checks
● Unchecked input values or strings

exceeding the target array's size
● Missing '\0' string termination

● Integer overflow or negative values
in index arithmetic or size calculations

● Uninitialized integer values
used in pointer or index arithmetic

Enemy #3:
Dynamic memory handling

● malloc object bounds violations

● „use-after-free“: Accessing free'd heap objects

● Double free (of the same object)

● Invalid free (of a pointer not pointing
to a malloc objects's beginning)

● Allocation/deallocation function mismatch
(new[] + delete, new + free, malloc + delete, ...)

● (Memory leaks)
● (Memory fragmentation)

Enemy #4:
The dark corners of C / C++

● printf format / argument mismatch
(fatal for non-string argument to %s !)

● Variadic functions in general (no typechecking!)
● Pointers ruined by

32 bit / 64 bit casts between pointer and int
(very common in 32 bit code ported to 64 bit!)

● Non-pointer data interpreted as a pointer:

- wrong case in a union

- forced casts (e.g. base class ptr ==> derived class ptr)

What's so nasty about these bugs?

● Immediate & debuggable crash:
Be happy, you had very good luck! :-)

● Crash with massively corrupted memory:
Debugger is unable to extract any info...

● Delayed crash:
- Hours later
- In completely unrelated parts of the program

● No crash at all:
Program just silently gives wrong results...

● Random, unreproducible behaviour.

What makes them even more evil?

Array and pointer bugs
are by far the most frequent reason

for security vulnerabilities!

Exploit technique #1:
● Place your exploit code into some array.
● Overwrite the return address on the stack

(or e.g. method pointers in objects)
to jump to your exploit code...

Step #0:
The compiler is your friend - use it!

Most important & always forgotten:

Compile with

maximum warning level / options

and

maximum optimization level

(needed for dataflow analysis!).

Warnings are given for a reason,
read them carefully!

Step #1:
Apply static program checkers

= Tools that try to find bugs
just by looking at the source.

Many marketing catchwords for the same basic principle:
Dataflow analysis, value or range propagation,
symbolic execution, abstract interpretation, ...

==> What range of values
can a variable or pointer contain

at a certain point of code?

(NULL ? Undefined ? <0 ? Just between x and y ?)

splint, uno, … (Open source), pclint,… (€)

Expectations and reality...

Many big companies swear on it and require
static program analysis for all code written.

My personal experience:

Static analysis used as a quick check
usually provides only limited help:

● Either detects less than a good compiler
● Or produces tons of output

(>= 80 % false positives)
● Works well only with code annotations

and carefully selected flags

Step #2:
„My name is 'Dump', 'Core Dump' “
● Compile your code with debugging info: gcc -g

● Enable dumps: ulimit -c ... (some large value)
● Let your program crash ==> core dump written
● Analyze the dump with the debugger:

gdb binary core

Display the crash location: „where“
Display the value of variables: „print ...“

● Or: Run your program within the debugger,
set watchpoints on suspected variables

Step #3:
Try ltrace and strace !

● ltrace traces all shared library calls & results

● strace traces all system calls & results

Only of limited use for pointer problems:

==> What happened just before the crash?

==> Perhaps the program forgot to check
for error return values?
(e.g. NULL return value of fopen !)

Both tools don't require any preparation,
not even debug info in the code!

Step #4:
Make your binaries foolproof...

Compiler-based solutions ...
● … add bookkeeping code

to each memory allocation & de-allocation
(local var's on function entry and exit, ...)
to keep track of each valid memory block

● … replace the malloc / free library functions
● … perhaps change the memory layout

(add guard words to separate valid blocks)

● … add checking code („points to valid data?“)
to each pointer/array access

Old bounds-checking gcc clones:
bgcc and MIRO (1)

Still one of the best (but slowest) checking logics:

● Keeps track of all local and global variables
and all valid heap objects

● For each pointer, knows the object it points to
(only tool which does this!!!)

● Checks not only accesses,
but also all pointer arithmetic

==> finds bad pointers early
(when created, not when dereferenced)

Old bounds-checking gcc clones:
bgcc and MIRO (2)

● Detects all pointer & array bugs, including:
- Pointers jumping to another valid object
- Uninitialized pointers!
- Many cases of use-after-return

● Used to detect all dynamic memory problems
(including use-after-free)

● Lists all memory leaks after program ended
● Doesn't catch crashes in library code

not compiled with bgcc.
● Doesn't detect uninitialized non-pointer values.

Old bounds-checking gcc clones:
bgcc and MIRO (3)

bgcc is C only,
with leak finder & very good error messages

MIRO checks C and C++, but without leak finder
● Huge CPU (· 10-30) and memory (· 3) overhead
● Have been „the king of the road“ for 1995 - 2008

● Unmaintained since 2005 (bgcc) / 2008 (MIRO)
(slowly becoming incompatible with current software:
For example, bgcc fails to catch all malloc / free calls
with modern versions of glibc...)

Address Sanitizer („Asan“)

The new „King of the road“:

 - Started by Google

 - Included in standard LLVM/clang (for years)
(LLVM/clang = Apple's open source C/C++ compiler)

 and in standard gcc (since 4.8)
● Handles C and C++
● Much faster than anything else

(slowdown <=2 !)

Address Sanitizer's brothers

● Thread Sanitizer:

Detects data races in multithreaded code
● Memory Sanitizer:

Detects reads of uninitialized memory

● Leak Sanitizer:

Provides a memory leak listing

Address Sanitizer's principles

● Direct mapping of each byte in the address space
to a huge valid / invalid table
(byte based, not block/object based!)

==> Very fast (only bit shift & add, no searching)
but allocates 16 TB of virtual memory
(only mapped to real mem on access to corresponding bytes)

● Guard words are inserted around
each local array and each heap block

==> „Off-bounds“ pointers are catched before
they reach the next valid memory block

Address Sanitizer's features

● Bounds-checks local, global and heap data
(needs additional compile/link options for global data)

● Detect most use-after-free
and some use-after-return bugs

● Detects most double free etc.
● Doesn't detect crashes in system libraries
● Doesn't detect most uninitialized values
● Doesn't detect pointers randomly pointing or

jumping to another valid memory area

Other bounds-checking compilers

● FailSafe C (open source):

- C only

- Not updated for > 5 years

I never tried it ...

● Parasoft Insure++:

Most powerful & most expensive
commercial product ...

Step #5:
Valgrind runs any code checked!

Valgrind is an open source universal
x86 binary code interpreter framework* ...

* the truth is by far more complex!

==> doesn't need the source, not even debug info!

==> works on plain, unmodified exe's and lib's!
(no need to recompile / relink!)

==> also checks all library code!

… where plugins may add code
before and after each instruction executed!

Valgrind's memcheck plugin

● … maintains a „valid“ bit and an „initialized“ bit
(set at first write) for each byte in memory,

● … checks each memory access,

● … replaces the malloc / free (new / delete)
library calls and all system calls.

The bad news:
● Code runs 10-30 times slower
● … and becomes about 15 times larger!
● 3 times as much memory is needed for data!

Memcheck's power ...

Memcheck detects
● almost all dynamic memory (heap) problems
● all accesses to uninitialized data
● all accesses to invalid memory areas
● most system calls with invalid pointers

… in your code and in any library!

… and it gives a complete memory leak listing!

… and blind spots

Memcheck will not detect
● bounds violations for local and global data

(it checks bounds only for malloc'ed blocks,
it can't insert guards on stack or global data!)

● most local object pointers used after return
● pointers jumping to another valid memory area

Valgrind's SGCheck plugin

… detects what memcheck misses (but nothing else):

For local and global data only (but not the heap!):
- Bounds violations
- Pointers jumping between objects
- Use-after-return

How?
● It reads the size and location

of each local / global array from the debug info.
● For each pointer to locals/globals, it remembers

to which array it is pointing (like bgcc / MIRO).

Valgrind's other plugins...

● Cachegrind:
Cache and branch prediction hit rate

● Callgrind, BBV, Lackey:
Execution profiling and call graphs

● Helgrind, DRD:
Multithreading lock & race condition check

● Massif, DHAT:
Heap object access profiling

Projects similar to Valgrind

DrMemory (new, active Open Source project,
developed at Google for Chrome):

● Also works on unmodified exe's and lib's
by runtime code modification

● Also uses runtime code instrumentation
● Offers almost the same features

as Valgrind's memcheck
● Said to be faster
● x86_32 only (no 64 bit version yet)

The commercial competition

Market leader: IBM/Rational Purify / Quantify
● About as powerful (and as slow) as Valgrind
● Works by analyzing and adding checking code

to all exe's and lib's before execution

==> no source or special compiler needed

==> separate „code instrumentation“ step
for all exe's and lib's needed (slow!)

● Very expensive (>> 5000 € per seat and year!)

Others: Micro Focus BoundsChecker, ...

Wrong tool #1:
gcc's „Stack Smashing Protector“

Compile with -fstack-protector

Catches only (without showing the culprit!) ...
● … writes behind the end of local arrays

which damage the return address
● … by inserting a guard value

below the return address of each function call
● … and checking it when the function returns

==> Fast, very little overhead! (< 5 %, often on by default)

==> Security feature, but useless for debugging!

Wrong tool #2:
Simple malloc replacements

Replace the malloc/free (new/delete) library:

Google Perftools, Dmalloc, MemProf, Mpatrol, ...

Main purpose:

Find memory leaks.
Dmalloc & Mpatrol (and in many cases standard glibc itself !)
also detect simple cases of

● double free, free of bad pointers

● malloc object bounds violations (at malloc/free time!)
by inserting boundary guard words

==> Won't help against most of our enemies!

Wrong tool #3:
VM-based malloc replacements

Electric Fence / DUMA (old, unmaintained!) use

Virtual Memory Management

for protection: They allocate
● one separate VM page per malloc object
● + one invalid page between two allocated pages.

==> They detect some gross bounds violations
and some use-after-free cases ...

==> … but require huge amounts
of real & virtual memory!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

